A Quantification of VOC Emissions from Carpet in a Residence with a High Level of Formaldehyde

Cari L. Gostic¹, Dr. Tom Jobson², Yibo Huangfu²
¹Cornell University, Ithaca, NY, ²Washington State University, Pullman, WA

The Indoor Air Quality [IAQ] Study at Washington State University seeks to better understand the link between IAQ and climate change. Volatile Organic Compounds [VOCs] are common indoor air pollutants that could become more dangerous as building envelopes tighten, for many VOCs are respiratory irritants or carcinogens at high concentrations. A 30 ppbv concentration of formaldehyde was measured in a local residence [H002] as part of WSU’s IAQ study, and carpet is suspected as a major source of this VOC. This project seeks to answer the following questions:

- Is carpet a significant contributor to high formaldehyde levels measured in H002?
- How do VOC emissions from Carpet 1 compare to new, “Green Label Plus” [GLP] certified carpets?
- How do elevated O₃ concentrations and exposure to UV light affect VOC emissions from carpet?

Methods

Samples:
- Carpet 1: From Room 1 in H002 (Fig 3). Material makeup unknown. Reported as 3 years old.
- Carpet 2: Solution dyed BCF nylon fiber. GLP certified. New.
- Carpet 3: Solution dyed BCF polyester fibers. GLP certified. New.

Measurements:
1) Used PTR-MS [Ionicon Analytic] to quantify carpet emissions under 3 treatments (Fig 1) in 148.2 L Teflon chamber with stainless steel rack (Fig 6)
 - Treatment 1: Normal chamber conditions; 10 L/min zero-air inflow, ambient RH and temperature (21°C)
 - Treatment 2: Elevated O₃: 26 ppb achieved in chamber [InDevR 2B Technologies, Inc. Ozone Calibration Source; Model 306]
 - Treatment 3: UV radiation (7.5 mW/cm²) [GE 15W blacklights]
2) Used GC-MS [Agilent Technologies 7890B] to further identify compounds emitted by carpet samples and to verify PTR-MS measurements (Fig 2)

Equation 1.

\[
\frac{dC}{dt} = (S + C_{p} n v) - (C n v) - (K C V)
\]

**C₀: Ambient Concentration; K: pollutant decay rate = 0; V: conditioned volume = 0.1482 m³ (chamber); 40.78 m³ (Room) ; n: air change rate = 4.05 hr⁻¹ (chamber); 0.21 hr⁻¹ (Room)

Figure 1. Carpet 1 PTR-MS Reading

Figure 2. Carpet 1 GC-MS Analysis

H002 VOC Concentration Calculations:

Using Equation 1, calculated source rate (S) for each VOC with Carpet 1 steady state mixing ratio (C) chamber measurement. Steady state concentration (C) of each VOC in Room 1 is then estimated using calculated S.

<table>
<thead>
<tr>
<th>m/z</th>
<th>PTR-MS</th>
<th>GC-MS</th>
<th>Carpet 1 Source Rate (µg/m²/hr)</th>
<th>Carpet 2 Source Rate (µg/m²/hr)</th>
<th>Carpet 3 Source Rate (µg/m²/hr)</th>
<th>CRI GLP Standard (µg/m²/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>0.75</td>
<td>0.15</td>
<td>0.91</td>
<td>250</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.04</td>
<td>0.15</td>
<td>125</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td>0.35</td>
<td>1.32</td>
<td>1.24</td>
<td>125</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>7.15</td>
<td>7.14</td>
<td>12.08</td>
<td>125</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td>4.01</td>
<td>7.72</td>
<td>4.06</td>
<td>125</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td>3.44</td>
<td>21.89</td>
<td>23.05</td>
<td>750</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td>2.42</td>
<td>5.24</td>
<td>5.47</td>
<td>125</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td>0.56</td>
<td>18.71</td>
<td>13.09</td>
<td>125</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td>3.07</td>
<td>10.16</td>
<td>11.46</td>
<td>125</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td>0.35</td>
<td>0.17</td>
<td>0.30</td>
<td>125</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td>0.41</td>
<td>0.90</td>
<td>0.90</td>
<td>125</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>0.13</td>
<td>0.18</td>
<td>0.18</td>
<td>750</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.19</td>
<td>0.18</td>
<td>125</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.11</td>
<td>0.11</td>
<td>125</td>
</tr>
</tbody>
</table>

Results

Under Normal Chamber Conditions, all 3 carpet samples meet GLP standards. Carpet 3 emits VOCs at the highest overall rate; Carpet 1 emits at the lowest rate.

Table 1: selected masses and their likely identities, emission rates from each carpet under Treatment 1, and CRI GLP standard emission rates.

Figure 4. Comparison of VOC mixing ratios for the 3 carpet samples obtained for Treatments 1 and 2.

Figure 5. Compares concentrations of VOCs under Treatments 1, 2 and 3

UV Radiation caused concentrations of most VOCs to increase. Response could be influenced by temperature: increase from 21°C to 32°C under UV lights.

The table below shows estimated concentrations of selected VOCs in Room 1 compared to guidelines cited by national and international health agencies. Only Formaldehyde exceeds suggested levels. Most identified VOCs are not recognized as indoor air toxics.

Table 2. Estimated steady state concentrations of selected VOCs in Room 1 and guidelines cited by national and international health agencies.

Conclusions

1. All 3 carpets emit VOCs within GLP standards, though elevated O₃ levels, high temperatures or exposure to UV light increases emissions of some VOCs.
2. Though Carpet 1 emits within GLP standards, emissions from Carpet 1 alone likely cause unhealthy levels of formaldehyde in Room 1 of H002 according to chronic exposure levels cited by the U.S. EPA.
3. The estimated 10.53 µg/m³ (9.67 ppbv) concentration of formaldehyde due to emissions from Carpet 1 account for 32% of the 30 ppbv concentration measured as part of Washington State’s IAQ Study. Carpet likely contributes significantly to unhealthy formaldehyde levels in H002, but is not the only factor.

References

This work was supported by the National Science Foundation’s REU program under grant number ACS-1461292